大桔灯文库logo

下载提示:1. 本站不保证资源下载的准确性、安全性和完整性,同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
2. 本文档由用户上传,版权归属用户,大桔灯负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。

相关文档

  • 05_5_(1).ppt

    1一、极限运算法则二、复合函数的极限运算法则三、求极限方法举例四、小结2一、极限运算法则定理证由无穷小运算法则,得3推论1推论2推论34二、复合函数的极限运算法则且对满足证5故6三、求极限方法举例解78解商的法则不能用由无穷小与无穷大的关系,得9解(消去零因子法)10解(无穷小因子分出法)11小结:12解先变形再求极限13解14解左右极限存在且相等,15例8解法 1 :原式=解法 2 :原式=16

  • 05_5_.ppt

    单击此处编辑母版标题样式单击此处编辑母版文本样式第二级第三级第四级第五级1一极限运算法则二复合函数的极限运算法则三求极限方法举例四小结2一极限运算法则定理证由无穷小运算法则得3推论1推论2推论3且则4.二复合函数的极限运算法则且对满足证5故6三求极限方法举例例1解78解商的法则不能用由无穷小与无穷大的关系得例29解例3(消去零因子法)10例4解(无穷小因子分出法)11小结:12例5解先变形再求极限

  • 05-5-.ppt

    1一、极限运算法则二、复合函数的极限运算法则三、求极限方法举例四、小结2一、极限运算法则定理证由无穷小运算法则,得3推论1推论2推论34二、复合函数的极限运算法则且对满足证5故6三、求极限方法举例解78解商的法则不能用由无穷小与无穷大的关系,得9解(消去零因子法)10解(无穷小因子分出法)11小结:12解先变形再求极限13解14解左右极限存在且相等,15例8解法 1 :原式=解法 2 :原式=16

  • 05_5_.ppt

    1一、极限运算法则二、复合函数的极限运算法则三、求极限方法举例四、小结2一、极限运算法则定理证由无穷小运算法则,得3推论1推论2推论34二、复合函数的极限运算法则且对满足证5故6三、求极限方法举例解78解商的法则不能用由无穷小与无穷大的关系,得9解(消去零因子法)10解(无穷小因子分出法)11小结:12解先变形再求极限13解14解左右极限存在且相等,15例8解法 1 :原式=解法 2 :原式=16

  • -.ppt

    定理定理即当 f (x) 是一个关于 x 的多项式时有(消去零因子法)?三小结 在某个过程中若 有极限 无极限那么 是否有极限为什么作业

  • .ppt

    一 极限的四则运算法则f(x)=1lim x)=±xfxx设有理函数(例2例8 求先变形再求极限.通分sin当例12 lim t ? -又设当=函数 ¥0

  • 1-05.ppt

    #

  • 05(1).ppt

    §25极限运算法则 在某一变化过程中? 如果极限lim x与lim y都存在? 则lim xy?lim x?lim y? lim(x?y)?lim x?lim y? 定理2?8(函数之和的极限) 在某一变化过程中? 如果极限lim x与lim y都存在? 则lim(x?y)?lim x?lim y?推论 两个无穷小量的代数和仍为无穷小量? 证:因为limx=A, limy=B,所以,对任意给定的ε

  • -.ppt

    #

  • 1-5.ppt

    无穷小与无穷大是相对于过程而言的.证结论:(消去零因子法)3三小结由极限运算法则可知:

违规举报

违法有害信息,请在下方选择原因提交举报


客服

顶部