#
#
求递推数列通项公式的常用方法一 公式法例一 已知无穷数列的前项和为并且求的通项公式跟踪训练1.已知数列的前项和满足关系.试证数列是等比数列.跟踪训练2.已知数列满足.则的通项公式是二.构造法例二 (1)已知数列中求数列的通项公式. (2)已知数列中求(3)已知数列中求数列的通项公式.(4)已知数列中求三 累加法例三 已知数列满足求跟踪训练3.已知求数列通项公式.四 累乘法例四 已知数
1.=型累加法:=(-)(-)…(-) =…例1.已知数列{}满足=1=(n∈N)求.[解] =--…- =…1 ==-1 ∴=-1 (n∈N)3.=pq 型(pq为常数)方法:(1)= 再根据等比数列的相关知识求. (2)-= 再用累加法求. (3)=先用累加法求再求.例3.已知{}的首项=a(a为常数)=21
求通项公式的常用方法 一 公式法:利用熟知的的公式求通项公式的方法称为公式法常用的公式有等差数列或等比数列的通项公式例一 已知无穷数列的前项和为并且求的通项公式【解析】: 又 .反思:利用相关数列与的关系:与提设条件建立递推关系是本题求解的关键.跟踪训练1.已知数列的前项和满足关系.试证数列是等比数列.二 归纳法:由数列前几项用不完全归纳猜测出数列
#
数列通项公式的求法考纲要求:1了解递推公式是给出数列的一种方法并能根据递推公式写出特殊数列通项公式2会根据与的求数列的通项公式考试方向:以与的关系与条件考查数列通项公式的求法以递推数列新情境下的数列为载体考查数列的通项及性质考点梳理:1数列的递推关系①型如(d为常数)采用 法②型如(q为常数)采用 法③型如采用 法④型如采用 法⑤型如采用
(44) 数列通项公式的求法 嵩明县第一中学 吴学伟 各种数列问题在很多情形下就是对数列通项公式的求解特别是在一些综合性比较强的数列问题中数列通项公式的求解问题往往是解决数列难题的瓶颈本文总结出几种求解数列通项公式的方法希望能对大家有帮助一定义法直接利用等差数列或等比数列的定义
由递推关系求数列通项公式给定初始条件和递推关系是确定数列的一种方法这类问题是近年来高考中的重点热点问题形如an1-an=f(n)型(1)若f(n)为常数即:an1-an=d此时数列为等差数列则an=a1(n-1) d.(2)若f(n)为n的函数时用迭加法.例1. 已知数列{an}满足证明证明:由已知得:an-an-1=3n-1故an=(an-an-1)(an-1-an-2)···(a2-a1
数列通项公式的求法 各种数列问题在很多情形下就是对数列通项公式的求解特别是在一些综合性比较强的数列问题中数列通项公式的求解问题往往是解决数列难题的瓶颈本文总结出几种求解数列通项公式的方法希望能对大家有帮助一定义法直接利用等差数列或等比数列的定义求通项的方法叫定义法这种方法适应于已知数列类型
违法有害信息,请在下方选择原因提交举报