PAGE PAGE 1对数及对数函数【套路秘籍】---千里之行始于足下一.对数的概念(1)对数的定义①一般地如果a(a>0a≠1)的b次幂等于N即abN那么称b是以a为底N的对数记作blogaN其中a叫做对数的底数N叫做真数.②底数的对数是1即logaa11的对数是0即loga10.(2)几种常见对数对数形式特点记法一般对数底数为a(a>0且a≠1)logaN常用对数底数为10lg
PAGE PAGE 1对数及对数函数【套路秘籍】---千里之行始于足下一.对数的概念(1)对数的定义①一般地如果a(a>0a≠1)的b次幂等于N即abN那么称b是以a为底N的对数记作blogaN其中a叫做对数的底数N叫做真数.②底数的对数是1即logaa11的对数是0即loga10.(2)几种常见对数对数形式特点记法一般对数底数为a(a>0且a≠1)logaN常用对数底数为10lg
PAGE PAGE 1第二篇 函数及其性质专题 对数与对数函数【考试要求】1.理解对数的概念和运算性质知道用换底公式能将一般对数转化成自然对数或常用对数2.通过具体实例了解对数函数的概念.能用描点法或借助计算工具画出具体对数函数的图象探索并了解对数函数的单调性与特殊点3.知道对数函数ylogax与指数函数yax互为反函数(a>0且a≠1).【知识梳理】1.对数的概念如果
PAGE PAGE 1指数及指数函数【套路秘籍】---千里之行始于足下一.根式1.根式的概念根式的概念符号表示备注如果axn那么x叫做a的n次实数方根n>1且n∈N当n为奇数时正数的n次实数方根是一个正数负数的n次实数方根是一个负数eq r(na)0的n次实数方根是0当n为偶数时正数的n次实数方根有两个它们互为相反数±eq r(na)负数没有偶次方根2.两个重要公式①
PAGE PAGE 1 复数【套路秘籍】---千里之行始于足下一.复数的有关概念(1)定义:形如abi(ab∈R)的数叫做复数其中a叫做复数z的实部b叫做复数z的虚部(i为虚数单位).规定i2=-1(2)分类:满足条件(ab为实数)复数的分类abi为实数b0abi为虚数b≠0abi为纯虚数a0且b≠0(3)复数相等:abicdiac且bd(abcd∈R).(4)共轭
PAGE PAGE 1二次函数与幂函数【套路秘籍】---千里之行始于足下1.幂函数(1)幂函数的定义一般地形如yxα的函数称为幂函数其中x是自变量α是常数.(2)常见的五种幂函数的图象和性质比较函数yx3yx2yxyyx-1图象性质定义域RRR{xx≥0}{xx≠0}值域R{yy≥0}R{yy≥0}{yy≠0}奇偶性奇函数偶函数奇函数非奇非偶函数奇函数单调性在R上单调递增在(-∞0
PAGE PAGE 1第二篇 函数及其性质专题 对数与对数函数【考试要求】1.理解对数的概念和运算性质知道用换底公式能将一般对数转化成自然对数或常用对数2.通过具体实例了解对数函数的概念.能用描点法或借助计算工具画出具体对数函数的图象探索并了解对数函数的单调性与特殊点3.知道对数函数ylogax与指数函数yax互为反函数(a>0且a≠1).【知识梳理】1.对数的概念如果
PAGE PAGE 1函数图像【套路秘籍】---千里之行始于足下1.函数的图象将自变量的一个值x0作为横坐标相应的函数值f(x0)作为纵坐标就得到了坐标平面上的一个点的坐标当自变量取遍定义域A内的每一个值时就得到一系列这样的点所有这些点组成的集合(点集)用符号表述为{(xy)yf(x)x∈A}所有这些点组成的图形就是函数的图象.2.描点法作图方法步骤:(1)确定函数的定义域(2)化
PAGE PAGE 1第六篇 平面向量与复数专题 复 数【考试要求】 1.通过方程的解认识复数2.理解复数的代数表示及其几何意义理解两个复数相等的含义3.掌握复数代数表示式的四则运算了解复数加减运算的几何意义.【知识梳理】1.复数的有关概念内容意义备注复数的概念形如abi(a∈Rb∈R)的数叫复数其中实部为a虚部为b若b0则abi为实数若a0且b≠0则abi为纯虚数复数
PAGE PAGE 1指数及指数函数【套路秘籍】---千里之行始于足下一.根式1.根式的概念根式的概念符号表示备注如果axn那么x叫做a的n次实数方根n>1且n∈N当n为奇数时正数的n次实数方根是一个正数负数的n次实数方根是一个负数eq r(na)0的n次实数方根是0当n为偶数时正数的n次实数方根有两个它们互为相反数±eq r(na)负数没有偶次方根2.两个重要公式①
违法有害信息,请在下方选择原因提交举报