只要连续积分 n 次即得含 n 个独立任意常数的通解 .即解线性方程 得设其通解为例 2解故所求特解为—— 降阶法或练 习 题
单击此处编辑母版标题样式单击此处编辑母版文本样式第二级第三级第四级第五级 立体体积第九章 重积分 第四节上页 下页 返回 结束 质心与转动惯量 曲面的面积重积分的应用一立体体积 曲顶柱体:其体积为 占有空间有界域 ? 的立体的体积为上页 下页 返回 结束 顶为连续曲面底为xOy平面上区域 D方法一利用二重积分方法二利用三重积分Dxy:a0y xDxy联立
单击此处编辑母版标题样式单击此处编辑母版文本样式第二级第三级第四级第五级单击此处编辑母版标题样式单击此处编辑母版文本样式第二级第三级第四级第五级单击此处编辑母版标题样式单击此处编辑母版文本样式第二级第三级第四级第五级单击此处编辑母版标题样式单击此处编辑母版文本样式第二级第三级第四级第五级单击此处编辑母版标题样式单击此处编辑母版文本样式第二级第三级第四级第五级单击此处编辑母版标题样式单击此处编辑母版
单击此处编辑母版标题样式单击此处编辑母版文本样式第二级第三级第四级第五级单击此处编辑母版标题样式单击此处编辑母版文本样式第二级第三级第四级第五级单击此处编辑母版标题样式单击此处编辑母版文本样式第二级第三级第四级第五级单击此处编辑母版标题样式单击此处编辑母版文本样式第二级第三级第四级第五级单击此处编辑母版标题样式单击此处编辑母版文本样式第二级第三级第四级第五级第五节 极限的存在性定理单调有界数列必
sin x cos x 例3:原式 例9:例13:请同学们自己看教材第224页 例 9:
第三节类似二重积分解决问题的思想 采用上页 下页 返回 结束 在直角坐标系下为? 的体积 方法2 . 三次积分法 (先一后二 )D计算上页 下页 返回 结束 用先二后一 及积分区域的特点灵活选择. 平面上页 下页 返回 结束 称为点M 的球面坐标.因此所围立体.yOz面对称 并与xOy面相切 提示:提示:
单击此处编辑母版标题样式单击此处编辑母版文本样式第二级第三级第四级第五级1一基本概念观察以下曲面的侧 (假设曲面是光滑的)上侧和下侧内侧和外侧左侧和右侧2曲面的分类:1.双侧曲面2.单侧曲面.典型双侧曲面3莫比乌斯带典型单侧曲面:4曲面法向量的指向决定曲面的侧.决定了侧的曲面称为有向曲面.有向曲面的投影问题:5二概念的引入实例: 流向曲面一侧的流量.671. 分割则该点流速为 .单位法向量
单击此处编辑母版标题样式单击此处编辑母版文本样式第二级第三级第四级第五级第四章 中值定理与导数的应用课时安排:12课时教学目标和要求:通过本章的学习使学生理解中值定理的含义并能运用中值定理会从罗彼塔法则出发解决常见的极限问题会分析函数的特性(单调性和极值)学会做一般函数的图形并能进行边际分析和弹性分析教学内容:了解内容:最大值与最小值理解内容:中值定理的含义罗彼塔法则曲线的凹向与拐点掌握内容:用导
高阶的无穷小量对于自变量在点 x 处的改变量证可导且例2求例4六.微分在近似计算中的应用例7解很小时处的切线即
证的个数. 变量树图类似地再推广中的u及y解解二利用全微分形式不变性
违法有害信息,请在下方选择原因提交举报