#
6 第十三讲 怎样求最值在生活实践中,人们经常面对带有“最”字的问题,如在一定的方案中,花费最低、消耗最少、产值最高、获利最大等;解数学题时,我们也常常碰到求某个变量的最大值或最小值之类的问题,这就是我们要讨论的最值问题,求最值问题的方法归纳起来有如下几点:1.运用配方法求最值; 2.构造一元二次方程,在方程有解的条件下,利用判别式求最值;3.建立函数模型求最值;4.利用基本不等式或不等分析法求
#
8 第二十四讲 几何的定值与最值几何中的定值问题,是指变动的图形中某些几何元素的几何量保持不变,或几何元素间的某些几何性质或位置关系不变的一类问题,解几何定值问题的基本方法是:分清问题的定量及变量,运用特殊位置、极端位置,直接计算等方法,先探求出定值,再给出证明.几何中的最值问题是指在一定的条件下,求平面几何图形中某个确定的量(如线段长度、角度大小、图形面积)等的最大值或最小值,求几何最值问题的
#
5 第二十五讲 辅助圆在处理平面几何中的许多问题时,常需要借助于圆的性质,问题才得以解决.而我们需要的圆并不存在(有时题设中没有涉及圆;有时虽然题设涉及圆,但是此圆并不是我们需要用的圆),这就需要我们利用已知条件,借助图形把需要的实际存在的圆找出来,添补辅助圆的常见方法有:1.利用圆的定义添补辅助圆;2.作三角形的外接圆;3.运用四点共圆的判定方法:(1)若一个四边形的一组对角互补,则它的四个顶
#
#
#
9 第十讲 抛物线一般地说来,我们称函数 (、、为常数,)为的二次函数,其图象为一条抛物线,与抛物线相关的知识有:1.、、的符号决定抛物线的大致位置;2.抛物线关于对称,抛物线开口方向、开口大小仅与相关,抛物线在顶点(,)处取得最值;3.抛物线的解析式有下列三种形式:①一般式:;②顶点式:;③交点式:,这里、是方程的两个实根.确定抛物线的解析式一般要两个或三个独立条件,灵活地选用不同方法求出抛物
违法有害信息,请在下方选择原因提交举报