由以上两个性质可知齐次线性方程组的全体解向量所组成集合关于向量的加法运算和数乘运算是封闭的
单击此处编辑母版标题样式单击此处编辑母版文本样式第二级第三级第四级第五级上一页下一页退 出证明§4.4 非齐次线性方程组解的结构1. 非齐次线性方程组解的性质证明 2. 非齐次线性方程组的通解例1 求解方程组解3. 含参变量的线性方程组(1)应用克莱姆法则(2)利用初等行变换特点:只适用于系数矩阵为方阵且 行列式不等于零的情形.特点:适用于方程组有唯一解无解以及 有无穷
1.非齐次线性方程组解的性质非齐次线性方程组Ax=b的通解为特解为例非齐次线性方程组的通解为
#
§4 线性方程组的解的结构回顾:线性方程组的解的判定包含 n 个未知数的齐次线性方程组 Ax = 0 有非零解的充分必要条件是系数矩阵的秩 R(A) < n .包含 n 个未知数的非齐次线性方程组 Ax = b 有解的充分必要条件是系数矩阵的秩 R(A) = R(A b)并且当R(A) = R(A b) = n时方程组有唯一解当R(A) = R(A b) < n时方程组有无限多个解.引言问题:什
#
#
二非齐次线性方程组解的结构
(1)(1)若 为 的解则 设齐次线性方程组的系数矩阵为 并不妨设 的前 个列向量线性无关. 所以 是齐次线性方程组解空间的一个基.例2 解线性方程组1.非齐次线性方程组解的性质(1)应用克莱姆法则求基础解系四小结)(思考题
--2 向量 可由A的列向量组(4-2)(1)的线性方程组§ 线性方程组解的存在性定理10而在解空间中基的概念我们在这里称为基础解系是例1是解吗就是必然是线性无关的 从而也是基础解系.由此得到解法2.是矩阵如果证20证明只需解§ 线性方程组在几何中的应用25注:非齐次方程组的解集不是空间得齐次方程组的基础解系※30
违法有害信息,请在下方选择原因提交举报