大桔灯文库logo

下载提示:1. 本站不保证资源下载的准确性、安全性和完整性,同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
2. 本文档由用户上传,版权归属用户,大桔灯负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。

相关文档

  • .doc

    二项式定理教案 一教学目标1.知识与技能:掌握二项式定理①能根据组合思想及不完全归纳得出二项式定理和二项展开式的通项②能正确区分二项式系数和某一项的系数③能正确利用二项式定理对任意给定的一个二项式进行展开并求出它的特定项2.过程与方法:通过定理的发现推导提高学生的观察比较分析概括等能力二教学重点与难点重点:二项式定理的发现理解和初步应用难点:二项式定理的发现教学方法启发

  • .doc

    二项式定理教案第 一 章(单元) 第 1 课时一教学内容:选修2-3 二项式定理二教学目标:1.掌握二项式定理及其归纳过程 2.培养学生发现和揭示事物内在客观规律能力和逻辑推理能力 3.养成严谨的思维习惯培养对数学的兴趣三教学重点与难点: 重点: 分析的二次展开式并归纳得到二项式定理

  • (一).doc

    二项式定理(一)教案汉川三中喻英杰教学目标1.知识与技能:(1)理解二项式定理是代数乘法公式的推广.(2)理解并掌握二项式定理能利组合思想证明二项式定理. 2.过程与方法: 通过学生参与和探究二项式定理的形成过程培养学生观察分析概括的能力以及化归的意识与方法迁移的能力体会从特殊到一般的思维方式.3. 情感态度与价值观: 培养学生的自主探究意识合作精神体验二项式定理的发现和创造历程体会数学语

  • (一).doc

    二项式定理教案(一)一教学目标:1.知识技能:(1)理解二项式定理是代数乘法公式的推广(2)理解并掌握二项式定理能利用计数原理证明二项式定理2.过程与方法 通过学生参与和探究二项式定理的形成过程培养学生观察分析概括的能力以及化归的意识与方法迁移的能力体会从特殊到一般的思维方式3.情感态度价值观培养学生自主探究意识合作精神体验二项式定理的发现和创造历程体会数学语言的简捷和严谨二教学重点难点重点:用计

  • 说课.doc

    二项式定理说课教案 教 材 分 析教材地位:二项式定理是在初中学习的多项式的基础上研究一种特殊的多项式——二项式的乘方的展开式由于二项式系数是一些特殊的组合数因此学完组合后讲二项式定理能加深对组合数的理解二项式定理与后边要学习的概率中的二项分布有其内在的联系是准备知识因此二项式定理在本章的学习中起着承上启下的作用教学(学习)目标:知识目标:正确理解掌握二

  • .doc

    二项式定理1的展开式中常数项为15则n= ( D ) 3 B4 C5 D62若展开式的二项式系数之和为64则展开式的常数项为( B )A10 B20 C30 D1203展开式中的系数为( B )A15B60C120D2404如果的展开式中含有非零常数项则正整数的最小值为( B

  • 大题加学.doc

    二项式定理练习题28已知的展开式的二项式系数和比的展开式的系数和大992求的展开式中:①二项式系数最大的项②系数的绝对值最大的项.29(12分)在二项式的展开式中前三项系数的绝对值成等差数列(1)求展开式的常数项 (2)求展开式中二项式系数最大的项(3)求展开式中各项的系数和30.已知的展开式前三项中的的系数成等差数列.(1)求展开式中所有的的有理项(2)求展开式中系数最大的项.31(12分

  • 导学.doc

    二项式定理导学目标: 1.能用计数原理证明二项式定理.2.会用二项式定理解决与二项展开式有关的简单问题.自主梳理1.二项式定理的有关概念(1)二项式定理:(ab)nCeq oal(0n)anCeq oal(1n)an-1b1…Ceq oal(kn)an-kbk…Ceq oal(nn)bn (n∈N)这个公式叫做______________.①二项展开式:右边的多项式叫

  • 1.3_.doc

    二项式定理学案编写:朱家锋 校对:高二数学备课组课标要求:能用计数原理证明二项式定理会用二项式定理解决与二项展开式有关的简单问题知识清单:1二项式定理2二项展开式有以下特征:(1)共有______项(2)各项的次数和都等于二项式的次数n(3)字母a按______排列次数由n递减到0字母b按_______排列次数由0递增到n.三典例分析题型一:求二项展开式中某一项或某一项的系数题型二:利

  • 49-.docx

    § 二项式定理使用时间:一二项式定理引入(请结合课本使用本学案)过程展示:求(ab)4的展开式可以对(ab)4按a或按b进行分类:(1)四个括号中全都取a得:C a4(2)四个括号中有3个取a剩下的1个取b得:C a3· Cb(3)四个括号中有2个取a剩下的2个取b得:C a2· Cb2(4)四个括号中有1个取a剩下的3个取b得:C a· Cb3(5)四个括号中全都取b得:C b4小结:对于展开式

违规举报

违法有害信息,请在下方选择原因提交举报


客服

顶部