数列的通项公式与求和练习1练习2练习3练习4练习5 练习6练习7 练习8 等比数列的前项和Sn2n-1则练习9 求和:5555555555……练习10 求和:练习11 求和: 练习12 设是等差数列是各项都为正数的等比数列且(Ⅰ)求的通项公式(Ⅱ)求数列的前n项和. 答案练习1答案:练习2 证明: (1) 注意到:a(n1)=S(n1)-S(n
数列的通项公式与求和练习1 练习2练习3练习4练习5 练 习6 练习7 练 8 若等比数列的前项和Sn2n-1则 练习9
数列的通项公式与求和练习1练习2练习3练习4练习5 练习6练习7 练习8 等比数列的前项和Sn2n-1则练习9 求和:5555555555……练习10 求和:练习11 求和: 练习12 设是等差数列是各项都为正数的等比数列且(Ⅰ)求的通项公式(Ⅱ)求数列的前n项和. 答案练习1答案:练习2 证明: (1) 注意到:a(n1)=S(n1)-S(n) 代
数列的通项公式与求和练习练习1练习2练习3练习4练习5 练习6练习7 练习8 等比数列的前项和Sn2n-1则练习9 求和:5555555555……练习10 求和:练习11 求和: 练习12 设是等差数列是各项都为正数的等比数列且(Ⅰ)求的通项公式(Ⅱ)求数列的前n项和. 答案练习1答案:练习2 证明: (1) 注意到:a(n1)=S(n1)-S
例1.已知数列的首项(1)若则__________ (2)若则_________(3)若则__________(4)若则_______(5)若则__________ (6)若则__________ (7)若则__________例2.设数列的各项都是正数且其中Sn是数列的前n项和(1)求证: (2)求数列的通项公式例3.已知数列的前n项和 满足() (1)写出数列的前三项(2)求通项四
#
数列练习题——求数列的通项公式(重要)一选择题:本大题共10小题每小题5分共50分.在每小题给出的四个选项中只有一个是符合题目要求的.1.在等差数列中已知则等于( )A.40 B.42 C.43 D.45 2.数列的前项和为若则等于( )A.1B.C.D.3.设是等差数列的前项和若则( )A.8
数列的通项公式与求和练习1练习2练习3练习4练习5 练习6练习7 练习8 等比数列的前项和Sn2n-1则练习9 求和:5555555555……练习10 求和:练习11 求和: 练习12 设是等差数列是各项都为正数的等比数列且(Ⅰ)求的通项公式(Ⅱ)求数列的前n项和. 答案练习1答案:练习2 证明: (1) 注意到:a(n1)=S(n1)-S(n
三.数列的通项的求法1.定义法:①等差数列通项公式②等比数列通项公式例1.等差数列是递增数列前n项和为且成等比数列.求数列的通项公式.解:设数列公差为∵成等比数列∴即∵ ∴………………………………①∵ ∴…………②由①②得:∴点评:利用定义法求数列通项时要注意不用错定义设法求出首项与公差(公比)后再写出通项练一练:已知数列试写出其一个通项公式:_________
#
违法有害信息,请在下方选择原因提交举报