2.绝对值不等式的解法1.掌握绝对值不等式的几种解法并解决绝对值不等式求解问题.2.了解绝对值不等式的几何解法.1.含有绝对值的不等式的解法(同解性)(1)x<aeq blc{rc (avs4alco1( a>0 a≤0.))(2)x>aeq blc{rc (avs4alco1( a>0 a0 a<0.))对于不等式x<a(a>0)由绝对值的几何定义知它
章节:4.5.2课时: 1 备课人 二次备课人课题名称第一讲 2.1 绝对值不等式 三维目标学习目标1.理解绝对值的定义及其几何意义 2.会用绝对值三角不等式的解决简单的问题重点目标理解绝对值的定义及其几何意义难点目标会用绝对值三角不等式的解决简单的问题导入示标目标三导学做思一:
1.绝对值三角不等式1.理解绝对值的几何意义.2.掌握绝对值三角不等式及其几何意义.3.三个实数的绝对值不等式及应用.1.绝对值的几何意义(1)实数a的绝对值a表示数轴上坐标为____的点A到______的距离.(2)对于任意两个实数ab设它们在数轴上的对应点分别为AB那么a-b的几何意义是数轴上AB两点之间的______即线段AB的______.(1)aeq blc{rc (avs4alco1
章节:4.5.2课时: 2 备课人 二次备课人 课题名称第一讲 绝对值不等式的解法 三维目标学习目标1.掌握简单的绝对值的不等式的解法 2.体会绝对值不等式解法的等价转化思想重点目标.掌握简单的绝对值的不等式的解法难点目标.掌握简单的绝对值的不等式的解法导入示标目标三导学做思一:
2.绝对值不等式的解法知识梳理 1含有绝对值的不等式的解法(同解性)(1)x<a(2)x>a.2.axb<caxb>c(c>0)型不等式的解法(1)axb<c(c>0)型不等式的解法是:先化为不等式组_________再利用不等式的性质求出原不等式的解集.(2)axb>c(c>0)的解法是:先化为________或________再进一步利用不等式性质求出原不等式的解集.3.x-ax-b≥
章节:4.5.1课时: 1 备课人 二次备课人课题名称第一讲 基本不等式 三维目标学习目标 1. 理解重要不等式与基本不等式知道不等式等号成立的条件 2. 初步掌握不等式证明的方法重点目标理解重要不等式与基本不等式知道不等式等号成立的条件难点目标初步掌握不等式证明的方法导入示标目标三导学做思一:
2016-2017学年人教A版选修四 基本不等式第1课时 学案一 学习目标 1.梳理本章知识形成知识网络 2.能解决基本的不等式性质应用解不等式问题 重点难点:不等式知识的整合三知识网络: 四导思探究: 1.若a>b则一定成立吗什么时候成立 2.若a>b则在什么时候成立3.解一元二次不等式的步骤为:五导练展示:1.已知x y且xy=4求的最小值.(答案:)
章节:453课时: 4 备课人 二次备课人 课题名称第三讲 排序不等式(2)三维目标学习目标:1了解排序不等式的证明方法2运用排序不等式解决一些数学问题3 培养学生由特殊事物发现一般规律的能力重点目标了解排序不等式的证明方法难点目标运用排序不等式解决一些数学问题导入示标目标三导学做思一:
第 PAGE 3 页 共 NUMPAGES 3 页2016-2017学年人教A版选修四 基本不等式综合练习第1课时 学案一 学习目标 1.进一步熟悉基本不等式的结构及应用条件 2.能灵活应用基本不等式证明或求最值 二重点难点: 基本不等式的灵活应用三知识点复习: 若abR则ab 并指出等号何时成立(提示:通过对知识点的了解和
三 排序不等式1.掌握排序不等式的推导和证明过程.2.会利用排序不等式解决简单的不等式问题.1.基本概念设a1<a2<a3<…<anb1<b2<b3<…<bn是两组实数c1c2c3是数组b1b2…bn的任何一个排列则S1a1bna2bn-1…anb1叫做数组(a1a2…an)和(b1b2…bn)的______和S2a1b1a2b2…anbn叫做数组(a1a2…an)和(b1b2…bn)的__
违法有害信息,请在下方选择原因提交举报