#
第三章 幂级数展开第三章 幂级数展开第三章 幂级数展开第三章 幂级数展开
#
#
3-6二维调和函数与平面场保角变换法(一)二维调和函数用u(x,y)表示两个实变量 x 和 y 的二元函数。方程称为二维拉普拉斯方程(参看§5-3)。具有连续的二阶导数并满足二维拉普拉斯方程的函数称为二维调和函数。关于复变函数与二维调和函数的关系有一条重要定理:定理一 设复变函数(3-6-1a)在复平面的区域D内解析,则它的实部u(x,y)和虚部v(x,y)都是(x,y)平面的区域D内的调和函数
#
#
单击以编辑母版标题样式单击以编辑母版文本样式第二级第三级第四级第五级第六章 拉普拉斯变换6.2 拉普拉斯变换6.3 拉普拉斯变换反演§6.1 符号法§6.1 符号法 (一)拉普拉斯变换的定义6.2 拉普拉斯变换对于任意函数 f(t)设 t<0 f(t)?0 只要 ? 足够大g(t)=f(t)e -? t 的傅氏变换为令记称为 f(t) 的拉普拉斯变换函数(像函数)G(?) 的逆变换
单击此处编辑母版标题样式单击此处编辑母版文本样式第二级第三级第四级第五级2.3 复变函数在环形区域中的幂级数展开 泰勒级数:在一个圆域内展开收敛半径R:若R=0函数只在该点解析R为有限值函数在某一圆内解析 若R = ∞函数在全平面解析 例如:f(z) = 1(1– z) 只能在 z < 1 展开成泰勒级数因为z =1是函数的奇点不能在全平面把它展开成泰勒级数但是在 z > 1 区域它又是解析的那
第二章复变(解析)函数的级数表示 一系列无穷多个数u1, u2, u3, …un …写成和式 u1 + u2+ u3 + …+ un +…就称为无穷级数,记为 。这仅仅是一种形式上的相加。这种加法是不是具有“和数”呢?这个“和数”的确切意义是什么呢?若级数收敛于S,也称此值S为级数的“和数” 。无穷级数的定义:为什么要研究级数?(1) 级数可作为函数的表达式,是研究函数的工具;(2) 常微分方程的
违法有害信息,请在下方选择原因提交举报